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Abstract

In this paper, we propose a variety of Long
Short-Term Memory (LSTM) based mod-
els for sequence tagging. These mod-
els include LSTM networks, bidirectional
LSTM (BI-LSTM) networks, LSTM with
a Conditional Random Field (CRF) layer
(LSTM-CRF) and bidirectional LSTM
with a CRF layer (BI-LSTM-CRF). Our
work is the first to apply a bidirectional
LSTM CRF (denoted as BI-LSTM-CRF)
model to NLP benchmark sequence tag-
ging data sets. We show that the BI-
LSTM-CRF model can efficiently use both
past and future input features thanks to
a bidirectional LSTM component. It can
also use sentence level tag information
thanks to a CRF layer. The BI-LSTM-
CRF model can produce state of the art (or
close to) accuracy on POS, chunking and
NER data sets. In addition, it is robust and
has less dependence on word embedding
as compared to previous observations.

1 Introduction

Sequence tagging including part of speech tag-
ging (POS), chunking, and named entity recogni-
tion (NER) has been a classic NLP task. It has
drawn research attention for a few decades. The
output of taggers can be used for down streaming
applications. For example, a named entity recog-
nizer trained on user search queries can be utilized
to identify which spans of text are products, thus
triggering certain products ads. Another example
is that such tag information can be used by a search
engine to find relevant webpages.

Most existing sequence tagging models are
linear statistical models which include Hid-
den Markov Models (HMM), Maximum entropy
Markov models (MEMMs) (McCallum et al.,
2000), and Conditional Random Fields (CRF)

(Lafferty et al., 2001). Convolutional network
based models (Collobert et al., 2011) have been re-
cently proposed to tackle sequence tagging prob-
lem. We denote such a model as Conv-CRF as
it consists of a convolutional network and a CRF
layer on the output (the term of sentence level log-
likelihood (SSL) was used in the original paper).
The Conv-CRF model has generated promising re-
sults on sequence tagging tasks. In speech lan-
guage understanding community, recurrent neural
network (Mesnil et al., 2013; Yao et al., 2014) and
convolutional nets (Xu and Sarikaya, 2013) based
models have been recently proposed. Other rele-
vant work includes (Graves et al., 2005; Graves et
al., 2013) which proposed a bidirectional recurrent
neural network for speech recognition.

In this paper, we propose a variety of neural
network based models to sequence tagging task.
These models include LSTM networks, bidirec-
tional LSTM networks (BI-LSTM), LSTM net-
works with a CRF layer (LSTM-CRF), and bidi-
rectional LSTM networks with a CRF layer (BI-
LSTM-CRF). Our contributions can be summa-
rized as follows. 1) We systematically com-
pare the performance of aforementioned models
on NLP tagging data sets; 2) Our work is the
first to apply a bidirectional LSTM CRF (denoted
as BI-LSTM-CRF) model to NLP benchmark se-
quence tagging data sets. This model can use both
past and future input features thanks to a bidirec-
tional LSTM component. In addition, this model
can use sentence level tag information thanks to
a CRF layer. Our model can produce state of
the art (or close to) accuracy on POS, chunking
and NER data sets; 3) We show that BI-LSTM-
CRF model is robust and it has less dependence
on word embedding as compared to previous ob-
servations (Collobert et al., 2011). It can produce
accurate tagging performance without resorting to
word embedding.

The remainder of the paper is organized as fol-
lows. Section 2 describes sequence tagging mod-
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els used in this paper. Section 3 shows the training
procedure. Section 4 reports the experiments re-
sults. Section 5 discusses related research. Finally
Section 6 draws conclusions.

2 Models

In this section, we describe the models used in this
paper: LSTM, BI-LSTM, CRF, LSTM-CRF and
BI-LSTM-CRF.

2.1 LSTM Networks

Recurrent neural networks (RNN) have been em-
ployed to produce promising results on a variety
of tasks including language model (Mikolov et al.,
2010; Mikolov et al., 2011) and speech recogni-
tion (Graves et al., 2005). A RNN maintains a
memory based on history information, which en-
ables the model to predict the current output con-
ditioned on long distance features.

Figure 1 shows the RNN structure (Elman,
1990) which has an input layer x, hidden layer
h and output layer y. In named entity tag-
ging context, x represents input features and y
represents tags. Figure 1 illustrates a named
entity recognition system in which each word
is tagged with other (O) or one of four entity
types: Person (PER), Location (LOC), Organi-
zation (ORG), and Miscellaneous (MISC). The
sentence of EU rejects German call to
boycott British lamb . is tagged
as B-ORG O B-MISC O O O B-MISC O O,
where B-, I- tags indicate beginning and interme-
diate positions of entities.

An input layer represents features at time t.
They could be one-hot-encoding for word feature,
dense vector features, or sparse features. An input
layer has the same dimensionality as feature size.
An output layer represents a probability distribu-
tion over labels at time t. It has the same dimen-
sionality as size of labels. Compared to feedfor-
ward network, a RNN introduces the connection
between the previous hidden state and current hid-
den state (and thus the recurrent layer weight pa-
rameters). This recurrent layer is designed to store
history information. The values in the hidden and
output layers are computed as follows:

h(t) = f(Ux(t) + Wh(t− 1)), (1)
y(t) = g(Vh(t)), (2)

where U, W, and V are the connection weights to
be computed in training time, and f(z) and g(z)

are sigmoid and softmax activation functions as
follows.

f(z) =
1

1 + e−z
, (3)

g(zm) =
ezm∑
k e

zk
. (4)

y

B−ORG O B−MISC O

rejects German callEU

x

h

Figure 1: A simple RNN model.

In this paper, we apply Long Short-Term Mem-
ory (Hochreiter and Schmidhuber, 1997; Graves
et al., 2005) to sequence tagging. Long Short-
Term Memory networks are the same as RNNs,
except that the hidden layer updates are replaced
by purpose-built memory cells. As a result, they
may be better at finding and exploiting long range
dependencies in the data. Fig. 2 illustrates a sin-
gle LSTM memory cell (Graves et al., 2005). The

cell
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Figure 2: A Long Short-Term Memory Cell.

LSTM memory cell is implemented as the follow-
ing:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + ittanh(Wxcxt +Whcht−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ottanh(ct)



where σ is the logistic sigmoid function, and i, f ,
o and c are the input gate, forget gate, output gate
and cell vectors, all of which are the same size as
the hidden vector h. The weight matrix subscripts
have the meaning as the name suggests. For ex-
ample, Whi is the hidden-input gate matrix, Wxo

is the input-output gate matrix etc. The weight ma-
trices from the cell to gate vectors (e.g. Wci) are
diagonal, so element m in each gate vector only
receives input from element m of the cell vector.

Fig. 3 shows a LSTM sequence tagging model
which employs aforementioned LSTM memory
cells (dashed boxes with rounded corners).

EU

B−ORG

forward

O B−MISC O

rejects German call

Figure 3: A LSTM network.

2.2 Bidirectional LSTM Networks
In sequence tagging task, we have access to both
past and future input features for a given time,
we can thus utilize a bidirectional LSTM network
(Figure 4) as proposed in (Graves et al., 2013). In
doing so, we can efficiently make use of past fea-
tures (via forward states) and future features (via
backward states) for a specific time frame. We
train bidirectional LSTM networks using back-
propagation through time (BPTT)(Boden., 2002).
The forward and backward passes over the un-
folded network over time are carried out in a sim-
ilar way to regular network forward and backward
passes, except that we need to unfold the hidden
states for all time steps. We also need a special
treatment at the beginning and the end of the data
points. In our implementation, we do forward and
backward for whole sentences and we only need to
reset the hidden states to 0 at the begging of each
sentence. We have batch implementation which
enables multiple sentences to be processed at the
same time.

2.3 CRF networks
There are two different ways to make use of neigh-
bor tag information in predicting current tags. The
first is to predict a distribution of tags for each time

O

forward

backward

EU rejects German call

OB−ORG B−MISC

Figure 4: A bidirectional LSTM network.

step and then use beam-like decoding to find opti-
mal tag sequences. The work of maximum entropy
classifier (Ratnaparkhi, 1996) and Maximum en-
tropy Markov models (MEMMs) (McCallum et
al., 2000) fall in this category. The second one is to
focus on sentence level instead of individual posi-
tions, thus leading to Conditional Random Fields
(CRF) models (Lafferty et al., 2001) (Fig. 5). Note
that the inputs and outputs are directly connected,
as opposed to LSTM and bidirectional LSTM net-
works where memory cells/recurrent components
are employed.

It has been shown that CRFs can produce higher
tagging accuracy in general. It is interesting that
the relation between these two ways of using tag
information bears resemblance to two ways of us-
ing input features (see aforementioned LSTM and
BI-LSTM networks), and the results in this paper
confirms the superiority of BI-LSTM compared to
LSTM.

OB−ORG O B−MISC

EU rejects German call

Figure 5: A CRF network.

2.4 LSTM-CRF networks
We combine a LSTM network and a CRF network
to form a LSTM-CRF model, which is shown in
Fig. 6. This network can efficiently use past input
features via a LSTM layer and sentence level tag
information via a CRF layer. A CRF layer is repre-
sented by lines which connect consecutive output
layers. A CRF layer has a state transition matrix as
parameters. With such a layer, we can efficiently
use past and future tags to predict the current tag,



which is similar to the use of past and future input
features via a bidirectional LSTM network. We
consider the matrix of scores fθ([x]T1 ) are output
by the network. We drop the input [x]T1 for nota-
tion simplification. The element [fθ]i,t of the ma-
trix is the score output by the network with param-
eters θ, for the sentence [x]T1 and for the i-th tag,
at the t-th word. We introduce a transition score
[A]i,j to model the transition from i-th state to j-
th for a pair of consecutive time steps. Note that
this transition matrix is position independent. We
now denote the new parameters for our network as
θ̃ = θ∪{[A]i,j∀i, j}. The score of a sentence [x]T1
along with a path of tags [i]T1 is then given by the
sum of transition scores and network scores:

s([x]T1 , [i]
T
1 , θ̃) =

T∑
t=1

([A][i]t−1,[i]t + [fθ][i]t,t).

(5)
The dynamic programming (Rabiner, 1989) can be
used efficiently to compute [A]i,j and optimal tag
sequences for inference. See (Lafferty et al., 2001)
for details.

EU

B−ORG

forward

O B−MISC O

rejects German call

Figure 6: A LSTM-CRF model.

2.5 BI-LSTM-CRF networks

Similar to a LSTM-CRF network, we combine a
bidirectional LSTM network and a CRF network
to form a BI-LSTM-CRF network (Fig. 7). In ad-
dition to the past input features and sentence level
tag information used in a LSTM-CRF model, a BI-
LSTM-CRF model can use the future input fea-
tures. The extra features can boost tagging accu-
racy as we will show in experiments.

3 Training procedure

All models used in this paper share a generic SGD
forward and backward training procedure. We
choose the most complicated model, BI-LSTM-
CRF, to illustrate the training algorithm as shown
in Algorithm 1. In each epoch, we divide the

O

forward

backward

EU rejects German call

OB−ORG B−MISC

Figure 7: A BI-LSTM-CRF model.

whole training data to batches and process one
batch at a time. Each batch contains a list of
sentences which is determined by the parameter
of batch size. In our experiments, we use batch
size of 100 which means to include sentences
whose total length is no greater than 100. For
each batch, we first run bidirectional LSTM-CRF
model forward pass which includes the forward
pass for both forward state and backward state of
LSTM. As a result, we get the the output score
fθ([x]

T
1 ) for all tags at all positions. We then run

CRF layer forward and backward pass to compute
gradients for network output and state transition
edges. After that, we can back propagate the er-
rors from the output to the input, which includes
the backward pass for both forward and backward
states of LSTM. Finally we update the network pa-
rameters which include the state transition matrix
[A]i,j∀i, j, and the original bidirectional LSTM
parameters θ.

Algorithm 1 Bidirectional LSTM CRF model
training procedure
1: for each epoch do
2: for each batch do
3: 1) bidirectional LSTM-CRF model forward pass:
4: forward pass for forward state LSTM
5: forward pass for backward state LSTM
6: 2) CRF layer forward and backward pass
7: 3) bidirectional LSTM-CRF model backward pass:

8: backward pass for forward state LSTM
9: backward pass for backward state LSTM

10: 4) update parameters
11: end for
12: end for

4 Experiments

4.1 Data

We test LSTM, BI-LSTM, CRF, LSTM-CRF,
and BI-LSTM-CRF models on three NLP tag-
ging tasks: Penn TreeBank (PTB) POS tagging,
CoNLL 2000 chunking, and CoNLL 2003 named
entity tagging. Table 1 shows the size of sen-



tences, tokens, and labels for training, validation
and test sets respectively.

POS assigns each word with a unique tag that
indicates its syntactic role. In chunking, each word
is tagged with its phrase type. For example, tag
B-NP indicates a word starting a noun phrase. In
NER task, each word is tagged with other or one of
four entity types: Person, Location, Organization,
or Miscellaneous. We use the BIO2 annotation
standard for chunking and NER tasks.

4.2 Features

We extract the same types of features for three data
sets. The features can be grouped as spelling fea-
tures and context features. As a result, we have
401K, 76K, and 341K features extracted for POS,
chunking and NER data sets respectively. These
features are similar to the features extracted from
Stanford NER tool (Finkel et al., 2005; Wang and
Manning, 2013). Note that we did not use extra
data for POS and chunking tasks, with the ex-
ception of using Senna embedding (see Section
4.2.3). For NER task, we report performance with
spelling and context features, and also incremen-
tally with Senna embedding and Gazetteer fea-
tures1.

4.2.1 Spelling features

We extract the following features for a given word
in addition to the lower case word features.
• whether start with a capital letter
• whether has all capital letters
• whether has all lower case letters
• whether has non initial capital letters
• whether mix with letters and digits
• whether has punctuation
• letter prefixes and suffixes (with window size

of 2 to 5)
• whether has apostrophe end (’s)
• letters only, for example, I. B. M. to IBM
• non-letters only, for example, A. T. &T. to ..&
• word pattern feature, with capital letters,

lower case letters, and digits mapped to ‘A’,
‘a’ and ‘0’ respectively, for example, D56y-3
to A00a-0
• word pattern summarization feature, similar

to word pattern feature but with consecutive
identical characters removed. For example,
D56y-3 to A0a-0

1Downloaded from http://ronan.collobert.com/senna/

4.2.2 Context features

For word features in three data sets, we use uni-
gram features and bi-grams features. For POS fea-
tures in CoNLL2000 data set and POS & CHUNK
features in CoNLL2003 data set, we use unigram,
bi-gram and tri-gram features.

4.2.3 Word embedding

It has been shown in (Collobert et al., 2011) that
word embedding plays a vital role to improve se-
quence tagging performance. We downloaded2 the
embedding which has 130K vocabulary size and
each word corresponds to a 50-dimensional em-
bedding vector. To use this embedding, we simply
replace the one hot encoding word representation
with its corresponding 50-dimensional vector.

4.2.4 Features connection tricks

We can treat spelling and context features the same
as word features. That is, the inputs of networks
include both word, spelling and context features.
However, we find that direct connections from
spelling and context features to outputs accelerate
training and they result in very similar tagging ac-
curacy. Fig. 8 illustrates this network in which
features have direct connections to outputs of net-
works. We will report all tagging accuracy using
this connection. We note that this usage of features
has the same flavor of Maximum Entropy features
as used in (Mikolov et al., 2011). The difference
is that features collision may occur in (Mikolov et
al., 2011) as feature hashing technique has been
adopted. Since the output labels in sequence tag-
ging data sets are less than that of language model
(usually hundreds of thousands), we can afford to
have full connections between features and out-
puts to avoid potential feature collisions.

backward

EU rejects German call

OB−ORG B−MISC O

forward

Figure 8: A BI-LSTM-CRF model with MaxEnt
features.

2http://ronan.collobert.com/senna/

http://ronan.collobert.com/senna/


Table 1: Size of sentences, tokens, and labels for training, validation and test sets.
POS CoNLL2000 CoNLL2003

training sentence # 39831 8936 14987
token # 950011 211727 204567

validation sentence # 1699 N/A 3466
token # 40068 N/A 51578

test sentences # 2415 2012 3684
token # 56671 47377 46666
label # 45 22 9

4.3 Results
We train LSTM, BI-LSTM, CRF, LSTM-CRF and
BI-LSTM-CRF models for each data set. We
have two ways to initialize word embedding: Ran-
dom and Senna. We randomly initialize the word
embedding vectors in the first category, and use
Senna word embedding in the second category.
For each category, we use identical feature sets,
thus different results are solely due to different
networks. We train models using training data
and monitor performance on validation data. As
chunking data do not have a validation data set,
we use part of training data for validation purpose.

We use a learning rate of 0.1 to train models.
We set hidden layer size to 300 and found that
model performance is not sensitive to hidden layer
sizes. The training for three tasks require less than
10 epochs to converge and it in general takes less
than a few hours. We report models’ performance
on test datasets in Table 2, which also lists the
best results in (Collobert et al., 2011), denoted as
Conv-CRF. The POS task is evaluated by comput-
ing per-word accuracy, while the chunk and NER
tasks are evaluated by computing F1 scores over
chunks.

4.3.1 Comparison with Cov-CRF networks
We have three baselines: LSTM, BI-LSTM and
CRF. LSTM is the weakest baseline for all three
data sets. The BI-LSTM performs close to CRF
on POS and chunking datasets, but is worse than
CRF on NER data set. The CRF forms strong
baselines in our experiments. For random cate-
gory, CRF models outperform Conv-CRF models
for all three data sets. For Senna category, CRFs
outperform Conv-CRF for POS task, while under-
perform for chunking and NER task. LSTM-CRF
models outperform CRF models for all data sets
in both random and Senna categories. This shows
the effectiveness of the forward state LSTM com-
ponent in modeling sequence data. The BI-LSTM-
CRF models further improve LSTM-CRF models

and they lead to the best tagging performance for
all cases except for POS data at random category,
in which LSTM-CRF model is the winner. The
numbers in parentheses for CoNLL 2003 under
Senna categories are generated with Gazetteer fea-
tures.

It is interesting that our best model BI-LSTM-
CRF has less dependence on Senna word em-
bedding compared to Conv-CRF model. For ex-
ample, the tagging difference between BI-LSTM-
CRF model for random and Senna categories are
0.12%, 0.33%, and 4.57% for POS, chunking and
NER data sets respectively. In contrast, the Conv-
CRF model heavily relies on Senna embedding to
get good tagging accuracy. It has the tagging dif-
ference of 0.92%, 3.99% and 7.20% between ran-
dom and Senna category for POS, chunking and
NER data sets respectively.

4.3.2 Model robustness
To estimate the robustness of models with respect
to engineered features (spelling and context fea-
tures), we train LSTM, BI-LSTM, CRF, LSTM-
CRF, and BI-LSTM-CRF models with word fea-
tures only (spelling and context features removed).
Table 3 shows tagging performance of proposed
models for POS, chunking, and NER data sets
using Senna word embedding. The numbers in
parentheses indicate the performance degradation
compared to the same models but using spelling
and context features. CRF models’ performance is
significantly degraded with the removal of spelling
and context features. This reveals the fact that
CRF models heavily rely on engineered features
to obtain good performance. On the other hand,
LSTM based models, especially BI-LSTM and
BI-LSTM-CRF models are more robust and they
are less affected by the removal of engineering fea-
tures. For all three tasks, BI-LSTM-CRF mod-
els result in the highest tagging accuracy. For
example, It achieves the F1 score of 94.40 for
CoNLL2000 chunking, with slight degradation



Table 2: Comparison of tagging performance on POS, chunking and NER tasks for various models.
POS CoNLL2000 CoNLL2003

Conv-CRF (Collobert et al., 2011) 96.37 90.33 81.47
LSTM 97.10 92.88 79.82
BI-LSTM 97.30 93.64 81.11

Random CRF 97.30 93.69 83.02
LSTM-CRF 97.45 93.80 84.10
BI-LSTM-CRF 97.43 94.13 84.26
Conv-CRF (Collobert et al., 2011) 97.29 94.32 88.67 (89.59)
LSTM 97.29 92.99 83.74
BI-LSTM 97.40 93.92 85.17

Senna CRF 97.45 93.83 86.13
LSTM-CRF 97.54 94.27 88.36
BI-LSTM-CRF 97.55 94.46 88.83 (90.10)

(0.06) compared to the same model but using
spelling and context features.

4.3.3 Comparison with existing systems

For POS data set, we achieved state of the art tag-
ging accuracy with or without the use of extra data
resource. POS data set has been extensively tested
and the past improvement can be realized in Table
4. Our test accuracy is 97.55% which is signifi-
cantly better than others in the confidence level of
95%. In addition, our BI-LSTM-CRF model al-
ready reaches a good accuracy without the use of
the Senna embedding.

All chunking systems performance is shown in
table 5. Kudo et al. won the CoNLL 2000 chal-
lenge with a F1 score of 93.48%. Their approach
was a SVM based classifier. They later improved
the results up to 93.91%. Recent work include the
CRF based models (Sha and Pereira, 2003; Mc-
donald et al., 2005; Sun et al., 2008). More re-
cent is (Shen and Sarkar, 2005) which obtained
95.23% accuracy with a voting classifier scheme,
where each classifier is trained on different tag
representations (IOB, IOE, etc.). Our model out-
performs all reported systems except (Shen and
Sarkar, 2005).

The performance of all systems for NER is
shown in table 6. (Florian et al., 2003) pre-
sented the best system at the NER CoNLL 2003
challenge, with 88.76% F1 score. They used a
combination of various machine-learning classi-
fiers. The second best performer of CoNLL 2003
(Chieu., 2003) was 88.31% F1, also with the help
of an external gazetteer. Later, (Ando and Zhang.,
2005) reached 89.31% F1 with a semi-supervised
approach. The best F1 score of 90.90% was re-
ported in (Passos et al., 2014) which employed a

new form of learning word embeddings that can
leverage information from relevant lexicons to im-
prove the representations. Our model can achieve
the best F1 score of 90.10 with both Senna em-
bedding and gazetteer features. It has a lower
F1 score than (Passos et al., 2014) , which may
be due to the fact that different word embeddings
were employed. With the same Senna embedding,
BI-LSTM-CRF slightly outperforms Conv-CRF
(90.10% vs. 89.59%). However, BI-LSTM-CRF
significantly outperforms Conv-CRF (84.26% vs.
81.47%) if random embedding is used.

5 Discussions

Our work is close to the work of (Collobert et al.,
2011) as both of them utilized deep neural net-
works for sequence tagging. While their work
used convolutional neural networks, ours used bi-
directional LSTM networks.

Our work is also close to the work of (Ham-
merton, 2003; Yao et al., 2014) as all of them em-
ployed LSTM network for tagging. The perfor-
mance in (Hammerton, 2003) was not impressive.
The work in (Yao et al., 2014) did not make use of
bidirectional LSTM and CRF layers and thus the
tagging accuracy may be suffered.

Finally, our work is related to the work of
(Wang and Manning, 2013) which concluded that
non-linear architecture offers no benefits in a high-
dimensional discrete feature space. We showed
that with the bi-directional LSTM CRF model, we
consistently obtained better tagging accuracy than
a single CRF model with identical feature sets.

6 Conclusions

In this paper, we systematically compared the per-
formance of LSTM networks based models for se-



Table 3: Tagging performance on POS, chunking and NER tasks with only word features.
POS CoNLL2000 CoNLL2003

LSTM 94.63 (-2.66) 90.11 (-2.88) 75.31 (-8.43)
BI-LSTM 96.04 (-1.36) 93.80 (-0.12) 83.52 (-1.65)

Senna CRF 94.23 (-3.22) 85.34 (-8.49) 77.41 (-8.72)
LSTM-CRF 95.62 (-1.92) 93.13 (-1.14) 81.45 (-6.91)
BI-LSTM-CRF 96.11 (-1.44) 94.40 (-0.06) 84.74 (-4.09)

Table 4: Comparison of tagging accuracy of different models for POS.
System accuracy extra data
Maximum entropy cyclic dependency 97.24 No
network (Toutanova et al., 2003)
SVM-based tagger (Gimenez and Marquez, 2004) 97.16 No
Bidirectional perceptron learning (Shen et al., 2007) 97.33 No
Semi-supervised condensed nearest neighbor 97.50 Yes
(Soegaard, 2011)
CRFs with structure regularization (Sun, 2014) 97.36 No
Conv network tagger (Collobert et al., 2011) 96.37 No
Conv network tagger (senna) (Collobert et al., 2011) 97.29 Yes
BI-LSTM-CRF (ours) 97.43 No
BI-LSTM-CRF (Senna) (ours) 97.55 Yes

Table 5: Comparison of F1 scores of different models for chunking.
System accuracy
SVM classifier (Kudo and Matsumoto, 2000) 93.48
SVM classifier (Kudo and Matsumoto, 2001) 93.91
Second order CRF (Sha and Pereira, 2003) 94.30
Specialized HMM + voting scheme (Shen and Sarkar, 2005) 95.23
Second order CRF (Mcdonald et al., 2005) 94.29
Second order CRF (Sun et al., 2008) 94.34
Conv-CRF (Collobert et al., 2011) 90.33
Conv network tagger (senna) (Collobert et al., 2011) 94.32
BI-LSTM-CRF (ours) 94.13
BI-LSTM-CRF (Senna) (ours) 94.46

Table 6: Comparison of F1 scores of different models for NER.
System accuracy
Combination of HMM, Maxent etc. (Florian et al., 2003) 88.76
MaxEnt classifier (Chieu., 2003) 88.31
Semi-supervised model combination (Ando and Zhang., 2005) 89.31
Conv-CRF (Collobert et al., 2011) 81.47
Conv-CRF (Senna + Gazetteer) (Collobert et al., 2011) 89.59
CRF with Lexicon Infused Embeddings (Passos et al., 2014) 90.90
BI-LSTM-CRF (ours) 84.26
BI-LSTM-CRF (Senna + Gazetteer) (ours) 90.10

quence tagging. We presented the first work of
applying a BI-LSTM-CRF model to NLP bench-
mark sequence tagging data. Our model can pro-
duce state of the art (or close to) accuracy on
POS, chunking and NER data sets. In addition,

our model is robust and it has less dependence on
word embedding as compared to the observation
in (Collobert et al., 2011). It can achieve accu-
rate tagging accuracy without resorting to word
embedding.
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